$\omega/2\theta$ scans	$R_{\rm int} = 0.012$
Absorption correction:	$\theta_{\rm max} = 30^{\circ}$
empirical ψ scan	$h = -4 \rightarrow 29$
(SDP/PDP; Enraf-Nonius,	$k = -4 \rightarrow 12$
1985)	$l = -10 \rightarrow 10$
$T_{\rm min} = 0.55, T_{\rm max} = 0.65$	3 standard reflections
3485 measured reflections	frequency: 240 min
2012 independent reflections	intensity decay: 1.2%
Refinement	
Definement on E	
Kennement on r	$\Delta \rho_{\rm max} = 0.73 \ {\rm e} \ {\rm A}^{-3}$
R = 0.025	$\Delta \rho_{\rm max} = 0.73 \text{ e A}^{-3}$ $\Delta \rho_{\rm min} = -0.80 \text{ e Å}^{-3}$
R = 0.025 $wR = 0.034$	$\Delta \rho_{\text{max}} = 0.73 \text{ e A}^{-3}$ $\Delta \rho_{\text{min}} = -0.80 \text{ e Å}^{-3}$ Extinction correction:
R = 0.025 wR = 0.034 S = 1.27	$\Delta \rho_{\text{max}} = 0.73 \text{ e A}^{-3}$ $\Delta \rho_{\text{min}} = -0.80 \text{ e Å}^{-3}$ Extinction correction: secondary Zachariasen
R = 0.025 wR = 0.034 S = 1.27 2012 reflections	$\Delta \rho_{\text{max}} = 0.73 \text{ e } \text{A}^{-3}$ $\Delta \rho_{\text{min}} = -0.80 \text{ e } \text{Å}^{-3}$ Extinction correction: secondary Zachariasen (1967)
Remember of F R = 0.025 wR = 0.034 S = 1.27 2012 reflections 70 parameters	$\Delta \rho_{max} = 0.73 \text{ e } \text{A}^{-3}$ $\Delta \rho_{min} = -0.80 \text{ e } \text{Å}^{-3}$ Extinction correction: secondary Zachariasen (1967) Extinction coefficient:
Remember on F R = 0.025 wR = 0.034 S = 1.27 2012 reflections 70 parameters H-atom parameters not	$\Delta \rho_{max} = 0.73 \text{ e } \text{A}^{-3}$ $\Delta \rho_{min} = -0.80 \text{ e } \text{Å}^{-3}$ Extinction correction: secondary Zachariasen (1967) Extinction coefficient: 4.5 (1) × 10 ⁻⁷

refinedScattering factors from Inter-
national Tables for X-ray
Crystallography (Vol. IV)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $(Å^2)$

$U_{\rm eq} = (1/3) \sum_i \sum_j U^{ij} a^i a^j \mathbf{a}_i . \mathbf{a}_j.$

	x	у	z	U_{eq}
Cdt	1/2	1/2	0.2300	0.03054 (6)
SI	0.48845 (3)	0.29468 (8)	-0.0090(1)	0.0311 (2)
S2	0.39918 (4)	0.54239 (9)	0.4142 (1)	0.0339 (2)
01	0.3828 (1)	0.2498 (2)	0.1585 (2)	0.0360 (7)
Cl	0.4204 (1)	0.1972 (3)	0.0315 (3)	0.0283 (7)
C2	0.3258 (1)	0.1655 (3)	0.2226 (4)	0.0387 (9)
C3	0.2731 (2)	0.2818 (4)	0.2498 (5)	0.052 (1)
C4	0.3446 (2)	0.0849 (5)	0.3852 (7)	0.092 (2)

 \dagger Site occupancy = 0.50.

Table 2. Selected geometric parameters (Å, °)

Cd—S1 Cd—S2 S1—C1	2.585 (1) 2.536 (1) 1.680 (3)	01—C1 01—C2	1.323 (3) 1.479 (3)
S1CdS1 ¹ S1CdS2 S1CdS2 ¹ S1 ¹ CdS2	90.86 (2) 114.60 (2) 110.96 (2) 110.96 (2)	S1 ¹ CdS2 ¹ S2CdS2 ¹ CdS1C1 CdS2C1 ¹¹	114.60 (2) 113.07 (3) 108.3 (1) 101.4 (1)

Symmetry codes: (i) 1 - x, 1 - y, z; (ii) x, $\frac{1}{2} + y$, $\frac{1}{2} + z$.

All non-H atoms were located from electron-density maps and were refined anisotropically by full-matrix least squares. H atoms were calculated and were not refined.

Data collection: CAD-4 Software (Enraf-Nonius, 1989). Cell refinement: CAD-4 Software. Data reduction: SDP for Windows (Frenz, 1998). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1985) as implemented in SDP for Windows. Program(s) used to refine structure: SDP for Windows. Molecular graphics: Xtal3.4 (Hall et al., 1995) ORTEP. Software used to prepare material for publication: SDP for Windows.

DWT acknowledges support from Air Force contract F33615-97-D-5405/TMC97-5405-0006-01. DWT also thanks Dr Doug Dudis for his helpful discussions.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BK1413). Services for accessing these data are described at the back of the journal.

References

- Enraf-Nonius (1985). Structure Determination Package. SDP/PDP User's Guide. Version 3.0. Enraf-Nonius, Delft, The Netherlands.
- Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft. The Netherlands.
- Frenz, B. A. (1998). SDP for Windows. B. A. Frenz & Associates, College Station, Texas, USA.
- Hall, S. R., Flack, H. D. & Stewart, J. M. (1995). Editors. Xtal3.4 Reference Manual. Universities of Western Australia, Australia, Geneva, Switzerland, and Maryland, USA.

Iimura, Y. (1973). Sci. Pap. Inst. Phys. Chem. Res. (Jpn), 67, 43-46.

- Kurtz, S. K. & Dougherty, J. P. (1978). Systematic Materials Analysis, edited by J. H. Richardson & R. V. Peterson, pp. 269–342. New York: Academic Press.
- Kurtz, S. K. & Perry, T. T. (1968). J. Appl. Phys. 39, 3798-3813.
- Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. University of Göttingen, Germany.

Zachariasen, W. H. (1967). Acta Cryst. 23, 558-564.

Acta Cryst. (1999). C55, 719-722

[1,3-Bis(pyridine-2-carboxamido)propane]palladium(II) monohydrate and its nickel(II) analogue

Masana Tamura,^a Yuji Kajikawa,^a Nagao Azuma,^a Hiroyuki Tani,^b Kunihiko Tajima,^c Kenji Kanaori,^c Keisuke Makino^c† and Toshio Takayama^d

^aDepartment of Chemistry, Faculty of Science, Ehime University, Matsuyama 790-8577, Japan, ^bAdvanced Instrumentation Center for Chemical Analysis, Ehime University, Matsuyama 790-8577, Japan, ^cDepartment of Polymer Science & Engineering, Kyoto Institute Technology, Sakyo-ku, Kyoto 606-8585, Japan, and ^dDepartment of Applied Chemistry, Faculty of Engineering, Kanagawa University, Kanagawa-ku, Yokohama 221-1293, Japan. E-mail: azuma@dpc.ehime-u.ac.jp

(Received 28 July 1998; accepted 3 December 1998)

Abstract

The title compounds, [N,N'-bis(2-pyridylcarbonyl)propane-1,3-diaminato- $\kappa^4 N$]palladium(II) monohydrate, $[Pd(C_{15}H_{14}N_4O_2)]\cdot H_2O$, and [N,N'-bis(2-pyridylcarbon-yl)propane-1,3-diaminato- $\kappa^4 N$]nickel(II) monohydrate, $[Ni(C_{15}H_{14}N_4O_2)]\cdot H_2O$, were investigated by means of X-ray diffraction and high-resolution NMR. The Pd^{II} and Ni^{II} ions have regular and distorted square-planar

[†] Current address: Institute of Advanced Energy, Kyoto University, Uji 611-0011, Japan.

coordination geometries, respectively. Libration of the propanediyl chains in these complexes was observed in both the crystalline and solution states.

Comment

Mono- and binuclear Cu^{II} complexes of 1,3-bis(pyridine-2-carboxamido)propane (H₂ppda) were isolated from aqueous alkaline (Ojima, 1967) and acidic solutions (Kajikawa *et al.*, 1981, 1984; Tsuboyama *et al.*, 1984), respectively. H₂ppda provides [Ni^{II}(ppda)]·H₂O crystals from an alkaline solution and fine powdered crystals from acidic solution which have not yet been characterized. The softer Pd^{II} Lewis acid gives [Pd(ppda)]·H₂O alone both in alkaline and acidic solutions. Crystal structure analyses of these complexes suggest libration of the propanediyl group in their crystalline state.

The crystal structures of palladium(II) complexes of N-methyl- and N,N'-dimethyl-1,2-bis(pyridine-2carboxamido)ethane, *i.e.* [PdCl(HpedaMe)] and [PdCl₂-(H₂pedaMe₂)], are known (Mulqi *et al.*, 1982). The coordination geometry of these complexes is square planar involving pyridyl (py) N atoms, a deprotonated amide N atom and a chloride ion or ions.

The molecular structure and selected bonding parameters of the present Pd^{II} complex, (I), are shown in Fig. 1 and Table 1, respectively. The coordination

geometry is square planar with an N₄ donor set. The average Pd—N(py) distance of 2.067 (3) Å is significantly longer than those in $[PdCl_2(H_2pedaMe_2)]$ and [PdCl(HpedaMe)] [2.00 (1) and 2.045 (10) Å, respectively], which can be attributed to the *cis* configuration of the pyridyl rings in the [Pd(ppda)] chromophore, in contrast with the *trans* configuration in the latter two complexes. The *cis* configuration causes steric repulsion between the H atoms *ortho* to the respective pyridyl N atoms. The average Pd—N(amide) bond distance of 1.983 (3) Å is the same as that in [PdCl(HpedaMe)], which may be ascribed to the softness of the Pd^{II} Lewis acid and the base-deprotonated amide N atom. Actually, this complex does not protonate even at pH 0.5.

The [Ni(peda)] chromophore $[H_2peda = 1,2-bis(pyridine-2-carboxamido)ethane]$ assumes a square-planar structure with C_2 symmetry (Stephens & Vagg, 1982a). The present [Ni(ppda)]·H₂O crystal is another crystal

(b)

Fig. 1. The molecular structures and atomic numbering systems of (a) the [Pd(ppda)] chromophore and (b) the β -[Ni(ppda)] chromophore. Displacement ellipsoids are drawn to include 50% probability. H atoms are included with displacement parameters of $B = 1.0 \text{ Å}^2$.

form of one reported previously (Stephens & Vagg, 1984b). Hereafter the former and the present crystals will be referred to as the α and β forms, respectively. There are also two crystal forms reported for [Cu(ppda)-(H₂O)]·2H₂O, where one modification is obtained by prolonged standing of the aqueous solution after separation of the other modification (Stephens & Vagg, 1982b, 1984a; Tsuboyama *et al.*, 1984). The β -[Ni(ppda)]·H₂O modification, (II), belongs to space group *P2/n* with *Z* = 2, which imposes a twofold axis through the Ni and C8 atoms (Fig. 1). The coordination geometry is tetrahedrally distorted square planar, which is very similar to that in the α form. The tetrahedral twist, defined by the

dihedral angle between the Ni/N1/N1' and Ni/N2/N2' planes is 15.9°, which is identical to that in the α form.

The C8 atom in the [Pd(ppda)] chromophore shows a B_{eq} value (16.8 Å²) much greater than those of C7 and C9 (5.1 and 6.0 Å², respectively). The B_{eq} value of C8 (12.9 Å²) in β -[Ni(ppda)] is also much greater than those of the other C atoms (3.5–7.8 Å²), implying flip-flop libration at C8.

High-resolution ¹H NMR spectra observed for methanol- d_4 and D₂O solutions of [Pd(ppda)]·H₂O exhibit no spectral change upon addition of DCl or NaOD to the solution. Thus, the coordination of a deprotonated amide N atom to Pd^{II} is more favourable than that of a protonated amide. The spectra observed for H₂ppda in methanol- d_4 at room temperature showed a quintet at 1.92 p.p.m. and a triplet at 3.55 p.p.m. (*ver*sus TMS) due to α - and β -methylene protons librating rapidly. These signals exhibited high-field shifts to 1.82 and 3.22 p.p.m., respectively, upon coordination to Pd^{II}, which may be attributed to deprotonation at the amide. The chemical shifts due to the aromatic ring protons of H₂ppda were shifted to low-field from 7.5–8.6 to 7.7– 8.7 p.p.m.

The variable-temperature ¹H NMR spectrum of $[Pd(ppda)] \cdot H_2O$ in methanol- d_4 was studied. Two broad lines due to the α - and β -methylene protons were split into two equally intense lines with separations ($\Delta\delta$) of 0.9 and 0.6 p.p.m., respectively, at 198 K. In general, the chemical shift of the axial proton of the cyclohexane ring is about 0.5 p.p.m. up-field compared with that of the equatorial proton (To-ori & Hirota, 1990). The observed splittings can thus be attributed to the chemical shifts of the axial and equatorial protons. Thus, the temperature-dependent libration resulting from concerted rotation about the N—C and C—C bonds is evident in solution.

Experimental

H₂ppda was prepared according to the method of Ojima (1967). [Pd(ppda)]·H₂O was synthesized by mixing a dilute HCl solution of PdCl₂ with an equimolar aqueous solution of H₂ppda and allowing the resulting solution to stand at ambient temperature. The isolated product was recrystallized from dimethylformamide as pale-yellow single crystals. Analysis: C 44.3, H 3.86, N 13.84%; calculated for C₁₅H₁₆N₄O₃Pd: C 44.3, H 3.97, N 13.77%. A single crystal was sealed in a glass capillary. [Ni(ppda)]·H₂O was prepared by mixing aqueous solutions of NiCl₂ and equimolar free base at pH 8–9, adjusted with NaOH solution. The product was recrystallized from alkaline solution (pH 8–9) as red single crystals. High-resolution ¹H NMR spectra were recorded on a Jeol JNM–EX400 and Bruker ARX-500 spectrometer.

Compound (I)

Crystal data

 $[Pd(C_{15}H_{14}N_4O_2)] \cdot H_2O$ M_r = 406.72 Mo $K\alpha$ radiation $\lambda = 0.7107$ Å

Triclinic
Pī
a = 10.762 (2) Å
b = 10.960(2)Å
c = 7.160(1) Å
$\alpha = 100.76 (1)^{\circ}$
$\beta = 97.53 (1)^{\circ}$
$\gamma = 115.33(1)^{\circ}$
$V = 728.5 (2) \text{ Å}^3$
Z = 2
$D_x = 1.854 \text{ Mg m}^{-3}$
D_m not measured

Data collection

Rigaku AFC-5R diffractom-	2807 reflections with
eter	$I > 3\sigma(I)$
ω –2 θ scans	$R_{\rm int} = 0.015$
Absorption correction:	$\theta_{\rm max} = 27.5^{\circ}$
ψ scan (North <i>et al.</i> ,	$h = 0 \rightarrow 13$
1968)	$k = -14 \rightarrow 12$
$T_{\rm min} = 0.676, T_{\rm max} = 0.826$	$l = -9 \rightarrow 9$
3523 measured reflections	3 standard reflections
3344 independent reflections	every 150 reflections
	intensity decay: 1.26%

Refinement

Refinement on F	$\Delta \rho_{\rm max} = 0.94 \ {\rm e} \ {\rm \AA}^{-3}$
R = 0.032	$\Delta \rho_{\rm min} = -0.97 \ {\rm e} \ {\rm \AA}^{-3}$
wR = 0.035	Extinction correction:
S = 1.570	Zachariasen (1967) type
2807 reflections	2, Gaussian isotropic
217 parameters	Extinction coefficient:
H atoms treated by a	0.0781
mixture of independent and constrained refinement	Scattering factors from International Tables for X-ray
$w = 1/\sigma^2(F_o)$	Crystallography (Vol. IV)
$(\Delta/\sigma)_{\rm max} = 0.0001$	

Table 1. Selected geometric parameters (Å, °) for (I)

Pd—N1	2.066 (3)	N2—C6	1.322 (5)
Pd—N2	1.983 (3)	N2C7	1.465 (5)
Pd—N3	1.983 (3)	N3—C9	1.464 (5)
Pd—N4	2.068 (3)	N3—C10	1.322 (5)
N1—Pd—N2	80.1 (1)	N2-Pd-N3	94.6 (1)
N1—Pd—N3	174.6 (1)	N2—Pd—N4	174.4 (1)
NI-Pd-N4	105.4 (1)	N3—Pd—N4	79.9 (1)

Compound (II)

Crystal data

 $[Ni(C_{15}H_{14}N_4O_2)] \cdot H_2O$ Mo $K\alpha$ radiation $M_r = 359.02$ $\lambda = 0.7107 \text{ Å}$ Cell parameters from 25 Monoclinic reflections P2/n $\theta=12.0{-}12.8^\circ$ a = 7.183 (2) Å $\mu = 1.355 \text{ mm}^{-1}$ b = 9.307 (3) Å T = 298.2 Kc = 11.326 (3) Å $\beta = 105.73 (2)^{\circ}$ Prismatic $0.50\,\times\,0.25\,\times\,0.08$ mm V = 728.8 (3) Å³ Red Z = 2 $D_x = 1.636 \text{ Mg m}^{-3}$ D_m not measured

Cell parameters from 24

 $0.25\,\times\,0.25\,\times\,0.15$ mm

reflections

 $\theta = 12.8 - 13.0^{\circ}$

T = 298.2 K

Prismatic

Yellow

 $\mu = 1.276 \text{ mm}^{-1}$

Data	collection
Duiu	concenton

1231 reflections with
$I > 3\sigma(I)$
$R_{\rm int} = 0.023$
$\theta_{\rm max} = 27.5^{\circ}$
$h = 0 \rightarrow 9$
$k = 0 \rightarrow 12$
$l = -14 \rightarrow 14$
3 standard reflections
every 150 reflections
intensity decay: 0.85%

Refinement

Refinement on F	$\Delta \rho_{\rm max} = 0.42 \ {\rm e} \ {\rm A}^{-3}$
R = 0.043	$\Delta \rho_{\rm min}$ = -0.62 e Å ⁻³
wR = 0.045	Extinction correction:
S = 1.674	Zachariasen (1967) type
1231 reflections	2, Gaussian isotropic
111 parameters	Extinction coefficient:
H atoms treated by a	0.0335
mixture of independent	Scattering factors from Inter-
and constrained refinement	national Tables for X-ray
$w = 1/\sigma^2(F_o)$	Crystallography (Vol. IV)
$(\Delta/\sigma)_{\rm max} = 0.002$	

Table 2. Selected geometric parameters (Å, °) for (II)

NiN1	1.911 (3)	N2-C6	1.326 (5)
Ni—N2	1.862 (3)	N2—C7	1.468 (5)
N1—Ni—N1 ⁱ	98.7 (2)	N1—Ni—N2'	168.0 (1)
N1—Ni—N2	83.9 (1)	N2—Ni—N2 ¹	96.0 (2)
C			

Symmetry code: (i) $\frac{1}{2} - x, y, \frac{1}{2} - z$.

The positions of the H atoms were idealized (C—H 0.95 Å), assigned isotropic displacement parameters $B(H) = 1.2B_{cq}(C)$, and allowed to ride on their parent C atoms. The water H atoms were refined isotropically.

For both compounds, data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1988); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation, 1989); program(s) used to solve structures: TEXSAN; program(s) used to refine structures: TEXSAN; molecular graphics: TEXSAN; software used to prepare material for publication: TEXSAN.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: OA1076). Services for accessing these data are described at the back of the journal.

References

- Kajikawa, Y., Mukai, K., Ishizu, K. & Ojima, H. (1981). Chem. Lett. pp. 801-804.
- Kajikawa, Y., Sakurai, T., Azuma, N., Kohno, S., Tsuboyama, S., Kobayashi, K., Mukai, K. & Ishizu, K. (1984). Bull. Chem. Soc. Jpn, 57, 1454–1458.
- Molecular Structure Corporation (1988). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- Molecular Structure Corporation (1989). TEXSAN. Single Crystal Structure Analysis Software. Version 5.0. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- Mulqi, M., Stephens, F. S. & Vagg, R. S. (1982). Inorg. Chim. Acta, 62, 221–229; 63, 197–207.

© 1999 International Union of Crystallography Printed in Great Britain – all rights reserved North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.

Ojima, H. (1967). Nippon Kagaku Zasshi, 88, 333-339.

Stephens, F. S. & Vagg, R. S. (1982a). Inorg. Chim. Acta, 57, 9-13.

Stephens, F. S. & Vagg, R. S. (1982b). Inorg. Chim. Acta, 57, 43-49.

Stephens, F. S. & Vagg, R. S. (1984a). Inorg. Chim. Acta, 88, 7-14.

Stephens, F. S. & Vagg, R. S. (1984b). Inorg. Chim. Acta, 90, 17-24.

To-ori, M. & Hirota, H. (1990). In Saishin NMR. Tokyo: Springer-Verlag. [Translation from Atta-ur-Rahman (1986). Nuclear Magnetic Resonance. New York: Springer-Verlag.]

Tsuboyama, S., Sakurai, T., Kobayashi, K., Azuma, N., Kajikawa, Y. & Ishizu, K. (1984). Acta Cryst. B40, 466–473.

Zachariasen, W. H. (1967). Acta Cryst. 23, 558-564.

Acta Cryst. (1999). C55, 722-724

Dichloro(2,6-diisopropylaniline-N)(η^{5} pentamethylcyclopentadienyl)rhodium(III)

SOON W. LEE AND JAE-GYUNG LEE

Department of Chemistry, Sung Kyun Kwan University, Natural Science Campus, Suwon 440-746, Korea. E-mail: swlee@chem.skku.ac.kr

(Received 29 September 1998; accepted 9 November 1998)

Abstract

The title compound, $[RhCp*Cl_2(H_2N-C_6H_3-2,6-iPr_2)]$ (where Cp* is pentamethylcyclopentadienyl) or $[RhCl_2-(C_{10}H_{15})(C_{12}H_{19}N)]$, was prepared from the reaction of di- μ -chloro-dichlorobis(pentamethylcyclopentadienyl)dirhodium(III), $[Cp*RhCl_2]_2$ [White, Yates & Maitlis (1992). *Inorg. Synth.* **29**, 228–234], with 2,6diisopropylaniline in acetonitrile. This compound has a three-legged piano-stool structure. The ring is almost parallel to the phenyl ring of the 2,6-diisopropylaniline ligand.

Comment

The iridium analogue of the title compound, $[IrCp*Cl_2-(H_2N-C_6H_3-2,6^{-i}Pr_2)]$, was prepared by Bergman's group (Gluek *et al.*, 1991). Using the same methodology, we isolated the title compound, (I), which is stable both in the solid state and in solution.

Acta Crystallographica Section C ISSN 0108-2701 © 1999